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ABSTRACT

An intermittency model that is formulated in local variables is proposed for representing
bypass transition in Reynolds-Averaged Navier-Stokes (RANS) computations. No external
data correlation is used to fix transition. Transition is initiated by diffusion, and a source term
carries it to completion. A sink term is created to predict the laminar region before transition
and vanishes in the turbulent region. Both the source and sink are functions of a wall-distance
Reynolds number and turbulence scales. A modification is introduced to predict transition in
separated boundary layers. The transition model is incorporated with the k —w RANS model.
The model is validated with several test cases. Decent agreement with the available data is
observed in a range of flows.

An extended model for roughness-induced transition is proposed based on this intermittency
model. To predict roughness effects in the fully turbulent boundary layer, published boundary
conditions for k£ and w are used. They depend on the equivalent sand grain roughness height,
and account for the effective displacement of wall distance origin. Similarly in our approach,
wall distance in the transition model for smooth surfaces is modified by an effective origin,
which depends on equivalent sand grain roughness. Flat plate test cases are computed to show
that the proposed model is able to predict transition onset in agreement with a data correlation
of transition location versus roughness height, Reynolds number, and inlet turbulence intensity.

Experimental data for turbine cascades are compared to the predicted results to validate the

proposed model.
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CHAPTER 1. OVERVIEW

1.1 Motivation of the Work

While RANS models for a wide range of fully turbulent flows are available in general CFD
codes, models for laminar-to-turbulent transition are far more limited. One of the difficulties
is that transition takes place through different mechanisms in various engineering flows.

When free-stream turbulence level (1/2k/3/U,..;) is about 1% or more (Langtry, 2006),
the boundary layers proceed from laminar to fully turbulent without the occurrence of linear
instability of the base state (Tollmien-Schilichting waves). This mode of transition is referred
to as bypass transition. Turbulence diffuses into the laminar boundary layer, and generates
disturbances known as Klebanoff modes. These grow in amplitude, and transition to turbulence
occurs. (Zaki and Durbin, 2005; Durbin and Wu, 2007)

In addition to a continuously turbulent free-stream, one very important instance of bypass
transition arises in turbomachinery, in which the boundary layer is subject to periodically
passing turbulent wakes. This is referred to as wake induced transition.

Moreover, separation induced transition is another common mechanism, in which a laminar
boundary layer separates under the influence of an adverse pressure gradient and transition
occurs within the separated shear layer due to the inflection point instability.

It is well known that surface roughness can trip a boundary layer. Bypass transition is
triggered by free-stream disturbances penetrating into the boundary layer and/or by surface
roughness. Nevertheless, there are few data correlations or prediction methods for roughness
induced transition. They are needed for many applications. For instance, to increase the effi-
ciency of turbomachinery performance, designers must account for effects of surface roughness

on both heat transfer and aerodynamic loss.
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It is challenging to develop a model which is valid for all different mechanisms. For general
use in CFD, the model must be formulated in local variables, eschewing dependency on the

boundary layer thickness or free-stream turbulence.

1.2 Introduction of the Work

The objective of the present work is to develop a model that invokes an intermittency
function to represent bypass transition based on the £ — w RANS turbulence model. Only
one transport equation for intermittency ~ is used in this new model. The v equation is
formulated in local variables with no reference to data correlation and is tensorally invariant.
The current model addresses bypass transition both in attached and separated flow. Although
separation induced transition proceeds by a different mechanism from attached flow transition,
some measure has been taken to locate the separation and trigger transition at the proper
location.

This bypass transition model for smooth walls is then extended to account for the effects
of wall roughness. An effective displacement depending on the equivalent sand grain roughness
height is imposed on the wall distance in the vy equation. Modifications are designed to predict
the transition location moving upstream appropriately due to surface roughness. To correctly
simulate the roughness effects on the skin friction and heat transfer coefficients in the fully tur-
bulent regime, formula proposed by Knopp et al. (2009) are chosen as the boundary conditions
for £ and w on rough walls.

A wide range of test cases are performed to validate the model, including flat plate cases, a
diffuser with a separation bubble, a compressor blade cascade, a high pressure and a low pressure
turbine blade cascade. Various flow conditions are employed, such as different Reynolds num-

bers, pressure gradients, free-stream turbulence intensities, periodic passing turbulent wakes,

and surface roughness.
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CHAPTER 2. REVIEW OF LITERATURE

2.1 Introduction

This chapter will cover a brief introduction on the categories of laminar-to-turbulent tran-

sition and the researches in the past of transition modeling through a literature view.

2.2 Modes of Transition

2.2.1 Orderly Transition

In early research on linear inviscid stability theory, a famous and useful general result is
that the occurrence of an inflection point in the basic velocity profile is a necessary condi-
tion for instability. Later on, solutions to viscous instability problem (Orr-Sommerfeld prob-
lem) for Blasius’s boundary layer were first solved by Tollmien and Schlichting theoretically.
Schubauer and Skramstad (1947), by introducing controlled oscillations with a vibrating rib-
bon of desired frequencies and amplitudes, experimentally confirmed the theoretical results
about the “nose” of the marginal curves (critical Reynolds number and wavenumber for the
marginally stable mode) quite convincingly. Klebanoff et al. (1962) refined and developed the
experiments and found that at first two-dimensional Tollmien-Schilichting (T-S) waves grow in
amplitude downstream. But when they reach a certain critical amplitude (1% of the free-stream
velocity), they become perturbed three-dimensionally. Secondary instability theory introduced
by Herbert (1983) attributes the growth of these three-dimensional disturbances to subhar-
monic resonance in the new basic flow, which is composed of the primary laminar flow and
the small amplitude T-S waves. The 3-D disturbances develop into A vortices, which lift up
away from the wall. This is where nonlinear development takes over and the turbulent spots

ery sparse. Subsequently downstream, they grow in size, increase
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in frequency and merge to form the fully turbulent boundary layer. This type of transition is
referred to as natural transition, or orderly transition. It will naturally happen with very small
free-stream turbulence of less than 1% intensity. Kleiser and Zang (1991) provided a review
about the early simulations to predict the complete transition process numerically. Since the
growth rate is so slow, transition to turbulence might not complete until a stream-wise distance
is as large as 20 times farther downstream from the leading edge than the initial starting point
of linear instability (Durbin et al., 2002). The schematic illustration for spatial evolution of

the natural transition is shown in Figure 2.2.1.

These Regions bypassed
gt —fOr bypass transition —g
Region 1] Region 2 Region 3 Region 4 Region 5
TS Spanwise Three- Turbulent Fully
Waves | Vorticity | Dimensional Spots Turbulent
Breakdown Flow

Stable

V.- laminar
flow

cErB s msAam s EE EEEE -

LE Reg

Figure 2.2.1 Schematic of spatial evolution of the natural transition. From Schlichting (1979).
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2.2.2 Bypass Transition

Under realistic conditions, the processes of natural transition are either entirely absent or are
difficult to identify within the transitional region of the flow. These instances of boundary layer
breakdown have become broadly known as bypass transition. Under free-stream turbulence
level of about 1.0% or more, boundary layers proceed from laminar to fully turbulent without
the occurrence of 2-D T-S waves. Instead, transition is preceded by the formation of large-
amplitude elongated disturbances, termed Klebanoff modes (Kendall, 1985). These elongated
disturbances are created from isotropic free-stream turbulence. The dominant disturbances are
the streamwise component u (10-20 % of the mean free-stream velocity) while the wall-normal
and spanwise velocities of the perturbations remain the order of the free-stream turbulence
intensity T'u (Liu et al., 2008). The perturbation is long in the sense that it takes the form
of forward and backward jets, or streaks. Figure 2.2.2 is two plane views of the jets, with
(a) observed in contours of the u (top) and v (bottom) component of perturbation velocity
in x — z plane and (b) depicted the disturbance vectors in « — y plane. The direct numerical
simulation (DNS) by Jacobs and Durbin (2001) captured the amplification of the streaks, their
secondary instability due to high-frequency forcing from the turbulent free stream, and finally
the inception of turbulent spots. Zaki and Durbin (2005) carried out DNS which found that the
streaks appear owing to the penetration of only low frequency perturbation from the free stream
into the boundary layer, and the transition is triggered by the high frequency non-penetrating
disturbances interacting with the jet-like disturbances when they lift up to the upper bound
of the shear layer. Therefore, the term bypass has become synonymous with transition due to
free-stream vortical perturbations. Durbin and Wu (2007) provided a review for this type of

transition including relevant concepts, theory and simulations.
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(a) Contours of u (top) and v (bottom) in a plane near the wall under conditions of bypass transition.

From Durbin and Reif (2011).
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(b) Disturbance vectors in x — y plane showing the jet-like modes. From Liu et al. (2008).

Figure 2.2.2 Schematic of the Klebanoff modes.

However, the term bypass does not preclude the presence of T-S waves entirely. When
both boundary-layer streaks and T-S waves are present, their interaction can be stabiliz-
ing or destabilizing. For instance, both the secondary instability analysis and experiments
(Cossu and Brandt, 2004; Fransson et al., 2005) confirmed that steady streaks are stabiliz-

reduce the growth rate of T-S waves and suppress transition, whereas some experiments

—
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(Boiko et al., 1994) suggested that streaks enhance breakdown in natural transition. Liu et al.
(2008) studied numerically the interaction between T-S waves and streaks, which shows that A
vortices occur and breakdown, similar to the secondary instability of T-S waves. This intriguing
result is explained as a competition between the reduction of growth rate of the primary T-S
waves and the secondary instability of the T-S waves, both owing to the streaks. If the streaks
prevent the T-S waves from increasing to the amplitude necessary to the secondary instability,
transition will be suppressed, whereas if the T-S waves are sufficiently strong and overcome the
negative effect of the streaks on their amplification, the streaks will enhance the breakdown via
secondary instability.

Note that flow conditions, such as the mean pressure gradient (Abu-Ghannam and Shaw,
1980), the leading-edge shape (Kendall, 1991), etc. may cause different transition onset and
length, even with seemingly the same free-stream turbulence level. Bypass transition can also
happen due to surface roughness where the disturbances are activated from the perturbations
at the wall instead of from the free-stream turbulence. This is also termed as roughness induced

transition (discussed below in Section 2.2.5).

2.2.3 Separation Induced Transition

When a laminar boundary layer separates, transition may occur in the shear layer of the
separated flow as a result of the inviscid instability mechanism. Due to the enhanced mix-
ing caused by the turbulent flow, the shear layer may reattach. This reattachment forms a
laminar-separation/turbulent-reattachment bubble on the surface. See Figure 2.2.3. The sep-
aration point is denoted as Xs. X; and Xp represent the onset and ending points of transition

respectively. Xp is the reattachment point.
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Figure 2.2.3 Schematic of a separation bubble. From Malkiel and Mayle (1996).

Separation bubbles have been classified as long or short based on their effect on the pressure
distribution on an airfoil (Mayle, 1991). A small change in the Reynolds number or angle of
attack can make a bubble change dramatically from short to long (Mayle and Schulz, 1997). If
the bubble is very long and even fails to reattach, the separated flow will be so dominant that
it will result in much more drag and a dramatic loss of lift and even cause the airfoil to stall.
Since long bubbles produce large losses and large deviations in exit flow angles, they should be
avoided. On the other hand, short bubbles are an effective way to force the flow turbulent and
may be considered as a means to control performance. The present difficulty is in predicting
whether the bubble will be long or short (Mayle, 1991).

In recent turbomachine designs, the suction side boundary layer over a blade is more subject
to separation, particularly in the compressor stage (Lardeau et al., 2012). Understanding tran-
sition in separated region can therefore impact the design for improvement of the efficiency of the
compressor performance. Experimental (Lou and Hourmouziadis, 2000; Volino and Hultgren,
2001) and DNS (Wissink and Rodi, 2006b; Zaki and Durbin, 2006; Zaki et al., 2010) studies
examined the response of transition and separation to the pressure gradient and free-stream
turbulence intensity. Strong acceleration (i.e. favorable pressure gradient) prevents transition
while adverse pressure gradient causes laminar separation and hence transition in the shear lay-

ers. With low free-steam turbulence, the dominant mechanism is associated with the inflection
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point in the velocity profile in the early stage of separation, similar to the Kelvin-Helmholtz
(K-H) instability in free-shear layers. In this case, transition occurs slowly, and the bubble is
long and may involve all of the stages listed for orderly transition (Mayle, 1991). In other words,
the T-S and K-H instability may coexist and interact with each other. With high free-stream
turbulence, the jet-like streaks, or Klebanoff modes, may occur upstream of the separated flow.
Fluctuations in streaks consequently give rise to a faster breakdown of the K-H spanwise ori-
ented vortices downstream in the initial stage of the separated region. The energy carried by
the Klebanoff modes increases with the free-stream turbulence intensity, and thus leads to a

earlier transition and a greater reduction in the separation bubble length.

2.2.4 Wake Induced Transition

Upstream and downstream blade interactions in passages of multi-stage axial turbomachines
result in a complex and inherently unsteady flow field. For instance, the boundary layer over
a blade surface is subject to a substantial degree of unsteadiness that owes to impinging wakes
of the upstream stator or rotor. The considerable effect of upstream wakes arises primarily
because substantial regions of laminar and transitional flows exist on the suction surface of
blades of intermediate stages. The impinging turbulent wake markedly alters the path to
transition. Figure 2.2.4 illustrates this type of rotor-stator wake interaction. Rather than the
bypass transition associated with continuous free-stream turbulence, this type of transition is

referred to as wake induced transition.
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Figure 2.2.4 Schematic of rotor-stator wake interaction. From Wu et al. (1999). U, otor: rotor
velocity in the stator reference frame; U,,;: rotor exit flow velocity in the rotor

reference frame; U,.: stator inflow velocity in the stator reference frame.

An idealized benchmark case to mimic wake induced transition in turbomachines would be
flat plate boundary layer transition induced by periodically passing wakes, though the com-
plexities of pressure gradients, surface curvature and leading edge are omitted. Liu and Rodi
(1991) carried out this basic flat plate case experimentally, and DNS by Wu et al. (1999) fol-
lowing the experimental configuration obtained accurately statistical fields via averaging over
samples both at constant phase and in the direction of homogeneity. Figure 2.2.5 depicts the
relative velocity field gained by subtracting the phase averaged velocity from the instantaneous

velocity. The three sections are three successive instants in time, with time increasing from top
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to bottom and time interval of 0.1 of the wake passing period. A backward jet is regarded as the

precursor to the turbulent spot (Durbin et al., 2002). In the top section, a certain free-stream

eddy causes jetting motion near the wall. Then the K-H type instability that grows on the

negative jet develops small-scale eddies that evolve into the turbulent spot. Wu and Durbin

(2000) predicted the wake induced transition over flat plate by RANS method and achieved

agreement with the DNS data in many crucial respects. DNSs of flow through passages of linear

turbomachinery cascades are nowadays feasible at the range of transitional Reynolds numbers.

Examples include Wissink and Rodi (2006a), Zaki et al. (2009) and Wissink et al. (2014).
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Figure 2.2.5 Fluctuation velocity field, with successive instants from top to bottom. This

figure shows the development of a backward jet in the relative velocity field and

its breakdown to turbulence. From Durbin et al. (2002).
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2.2.5 Roughness Induced Transition

In reality, most of the blades in turbomachines quickly become roughened due to various
damage mechanisms (Licari and Christensen, 2011), though they are initially hydrodynami-
cally smooth. In general, surface roughness adversely affects turbomachinery performance by
increasing external heat transfer and by increasing aerodynamic loss.

Arts et al. (1990) pointed out that a smooth vane can have transition occurring far down-
stream the leading edge on the suction side at moderate Reynolds numbers, even with high
inflow turbulence intensities; but, as the roughness height increases, the transition onset grad-
ually moves upstream to the leading edge. Figure 2.2.6 shows the measured heat transfer
coefficients in the test of Stripf et al. (2005). Only at the highest roughness does the heat
transfer appear to be fully turbulent over the entire surface. When the boundary layer be-
comes turbulent, heat transfer can increase by a factor of 10 (Stripf et al., 2009a). The change
in blade surface heat transfer with transition is a very good indicator of transition onset and
length. Arts (1995) showed that in the first turbine stage just the presence of film cooling holes
on the blade surfaces causes transition to turbulence. Transition is typically not an issue for
this stage due to film cooling. In later stages, where film cooling may not be used and Reynolds
numbers are lower, heat transfer may remain a concern due to roughness induced transition if
blades have only internal cooling. The optimization of cooling technologies requires the exact
knowledge of the heat transfer distribution for rough surface transitional boundary layers.

Boyle and Stripf (2009) mentioned that surface roughness generally decreases aerodynamic
efficiency of a turbine blade cascade according to relevant literature. But Boyle and Senyitko
(2003) show that at low Reynolds numbers roughness improves aerodynamic efficiency, while
at high Reynolds numbers roughness doubles vane loss. Therefore, to improve the efficiency at
both low and high Reynolds numbers, exploring the effects of roughness on the boundary layer
is necessary. A recent review of Bons (2010) also reported that a definite region of “roughness
benefit” could be obtained if the roughness-induced transition could suppress the separation
bubble at low Reynolds numbers within low pressure turbine stage. Rao et al. (2014) presented

their work on the individual and coupled effects of the incoming free-stream turbulence and
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surface roughness on the transition of a separated shear layer via large eddy simulation (LES).
Note that there is a compromise between the positive effects of suppression of the bubble and
the negative effects arising from the increasing loss in the reattached rough-surface turbulent

boundary layer (Zhang, 2006).

Pressure surface Suction surface

0 | | | | | I | | | | |
-0.08 -0.04 0 0.04 0.08 0.12

Surface distance, m

Figure 2.2.6 Experimental data for heat transfer coefficients versus the surface distance. Fig-
ure reproduced from Boyle and Stripf (2009), and data originally from the test
of Stripf et al. (2005).

2.3 Transition Modeling

There are generally three approaches for transition modeling and prediction: rely on the
closure model to transition from laminar to turbulent solutions; use a data correlation to decide
when to switch from laminar to turbulent solutions; or devise additional model equations to
represent transition. In the last approach, two branches have been explored: the first is to
develop an equation for the energy of fluctuations that occur in the laminar region upstream

of transition; the second is to develop an equation for the intermittency function, y(z,t).
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2.3.1 Turbulence Models

Most turbulence models are developed for fully turbulent flows and calibrated with turbulent
data. However, most transport equation models do converge to a laminar solution at low
Reynolds number and to a turbulent solution at sufficiently high Reynolds number. The model
equations do evidence a transition between laminar and turbulent solution branches. Most
eddy viscosity closure models predict early transition.

As turbine blades often operate at low enough Reynolds numbers to come across signifi-
cant portions of laminar flow on their surfaces, their boundary layers are better described as
buffeted laminar layers. But in such instances, the bulk of the flow may be turbulent and the
overall flow calculation must be with a turbulence model. Therefore bypass transition, which
is stochastic by nature, is dominant in such boundary layers. Turbulent spots are highly lo-
calized, irregular motions inside the boundary layer. So the turbulence models which describe
statistical fluid dynamics are not entirely irrelevant; but neither are they entirely rational. Very
often the models are solved without revision, depending on their capability of early transition
prediction. But when accurate predictions of the laminar and transitional regions are required,

the turbulence model must be modified by a method to predict transition.

2.3.2 Data Correlation Based Models

This approach requires a criterion that allows the determination of the position of transition
onset, and switches from a laminar to a turbulent computation at this prescribed transition
point. For a zero pressure gradient flow, the position of the transition onset has been correlated
by Mayle (1991) as

Reg; = 400Tu 0625 (2.3.1)

where Reg; is the momentum thickness Reynolds number at the transition onset location.
Abu-Ghannam and Shaw (1980) proposed a criterion for the transition location accounting for

the pressure gradient, which reads

F(A
Regy = 163 + exp | F(Ng) — %Tu , (2.3.2)
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where
F(X\g) = 6.91 4+ 12.75)g + 63.64A2  for A\g <0 (23.3)
F(X\g) = 6.91 +2.48 g — 12.27A2  for \g > 0,

v z
T is the free-stream turbulence intensity in percentage, 1001/2k/3/Us, measured in the free

62 ouU.
0 is the momentum thickness and Ag = (—) ( 3 Oo) is the local pressure gradient parameter.

stream. Transition occurs where the local momentum thickness Reynolds number exceeds the
above critical value.

Suzen et al. (2000) proposed another correlation which provided slightly better approxima-
tion than the correlation of Abu-Ghannam and Shaw (1980) for favorable pressure gradients
while maintaining the good features of Abu-Ghannam and Shaw in adverse pressure gradient

region. The transition criterion was re-correlated to T'u and the acceleration parameter, K,

Reg; = (120 4 150Tu~2/%)coth[4(0.3 — K x 10°)], (2.3.4)
v ouU.
where K = <@> <8_;O)
Another approach is to modulate either the eddy viscosity or the production term in the
k equation to increase it from zero to its full value across a transition zone. The basic idea is
to introduce an intermittency function, 7, that increases from zero to unity, and to replace the
eddy viscosity by yvr. If the transition has been predicted to occur at x; by making use of a

transition criterion like Equation (2.3.1), formulas like
y=1-— e~ @ e/ gy > g, (2.3.5)

have been used (Dhawan and Narasimha, 1958). ~ is slowly ramped up from zero to unity until
the fully turbulent boundary is achieved. Here I; is a transition length (12 = v?/(fcU2,)), which
has been estimated to be about 126 times the momentum thickness (I; = 1266) in zero pressure-
gradient boundary layers. The parameter no relates to the propagation rate of turbulent spots
in laminar boundary layer. There are many other algebraic models for intermittency and these
are usually based on properties like turbulent spot production and propagation rate. Examples
include Gostelow et al. (1994) and Solomon et al. (1996). Steelant and Dick (1996) provided

the following correlations of no versus Tu and K,

hozpe = 1.25 x 107 x Tw//4, (2.3.6)

www.manharaa.com




16

(474Tu—2.9)1—633p(2><106K)’ K < 0’
. = (2.3.7)
nozpag 10—3227K0'5985, K > 0.

no

where nozpa is for cases of zero pressure gradient.

2.3.3 Transport Equation Based Models
2.3.3.1 Laminar fluctuation model

As mentioned at the beginning of this section, this type of model is devised with a transport
equation for the energy of fluctuations in the laminar boundary layer-the Klebanoff modes
or instability waves-and has closer connection to the phenomenology of transition. These
fluctuations grow and produce turbulent kinetic energy. The key elements of the equation
for the energy of laminar (non-turbulent) fluctuations, kz,, are its production and transfer to
turbulence.

Model equations proposed by Mayle and Schulz (1997), and subsequently Lardeau et al.

(2004) and Lardeau et al. (2009), in a general form, are written as,
Dik;, =P, +V-Ty, — Dy — R, (2.3.8)

where Py is the production term and depends on the type of transition considered (bypass
or separated-induced), the energy flux Ty, is assumed to be purely viscous, i.e. Ty, = vVkp,
while the dissipation rate Dy, is approximated analogous to that for turbulent flows, namely on
dimensional grounds with the kinetic energy and wall-normal distance as the relevant scales,
i.e. Dy = 2vkr/d?, where d is the distance from the wall. The right most term R represents
breakdown of laminar fluctuations into turbulence, or the transfer of laminar kinetic energy to
its turbulent counterpart. The same term, with positive sign, is added to the turbulent kinetic
energy equation: Dik =P+ R—€....

Mayle and Schulz (1997) proposed a form of the source term

U2
P, = C’w%\/ krksoexp(—dt/C+),

based on the assumption that shear production is zero, and Lardeau et al. (2004) adopted

ean velocity and kinetic energy in the free stream respectively.
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d" = du,/v is the dimensionless wall distance with u, = \/m , being the skin friction. C,
depends on the effective frequency and the turbulence level in free stream, and C* = 13. For
separation-induced transition, Lardeau et al. (2009) adapted the production term compatible
with the turbulent-flow form: P; = 2vp |S ]2. Here |S |2 = 5;;5;; and S;; is the rate of strain
tensor.

The total kinetic energy proposed by Lardeau et al. (2004) is written as kip = (1—7)kr+vk

and the eddy viscosity vy = fuCukt%(”k)

. The damping fuction f, represents the influence of
molecular viscosity on its turbulent counterpart. Here the intermittency function ~ is used to
damp the tendency of the turbulence model from inducing early transition by an excessive and
rapidly build-up turbulence production. At this point, data correlation similar to Equation
(2.3.5) was used for « distribution, so was Equation (2.3.4) for v switch-on. This is thereby

not formulated locally.

Walters and Cokljat (2008) proposed the form
Dikp = 2vpy|S|* = R— Dy +V - (vVkyz), (2.3.9)

in which 2v7|S|? is the rate of production of laminar fluctuations. To accommodate both

bypass and natural transition, v; has two components,

vy = vBp + VNT,

associated with large-scale eddies and with instability.
Initially, the large-scale eddies are contained in free-stream turbulence. Klebanoff modes are

spawned by these large-length-scale motions. The model is motivated by this phenomenology.

Walters and Cokljat (2008) wrote

QN2

v

vpp = 3.4 x 1075 f, VEkTider s, (2.3.10)

with

Ao = min[2.495d, Vk ]

providing the length scale; and
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where L = Vk Jw, representing the large-scale component of the turbulent kinetic energy. The
laminar fluctuation Equation (2.3.9) is conjoined with the k-w model.
In Equation (2.3.10), € is the magnitude of the vorticity vector; and f; is the damping

function

kry

fr=1—exp |—4360———=
T 232,|P

The numerical coefficients were adjusted to fit data. The component vpp becomes small where
d is large and where d is small. This matches the exponential observation that Klebanoff modes
develop in the central part of the boundary layer.

Natural transition is invoked by

|2ld”

UNT = 10_1°ﬁLT|Q|d2, (2.3.11)

with

0, Rq < 1000,

Br =

1 — e (0005Ea=5) = B0~ 1000,
where Rq = |Q|d?/v, and [Q| = /2Q;;;. This acts analogously to an instability criterion.
In a Blasius boundary layer, max, Rq = 2.193Ry. Thus the instability criterion is g > 456
(which is higher than the value of 200 from linear stability theory).

Their R form is
kr,

R=0.21B,-%,
T

where 77 = Aegf/ Vk. As the turbulent energy grows, 7 decreases, transferring energy from

laminar fluctuations to turbulence. The coefficient By, controls the onset of transition,

0, Ry < 35,
B, =

1—e (Be=39/8 Ry > 35,
where Ry, = Vkd/v. The transition criterion is based on the Reynolds number Ry, which
contains wall distance and turbulent kinetic energy. Thus breakdown initiates well above the
wall, as occurs in experiments.
Walters and Cokljat (2008) also modified R for natural transition, and introduce other

nctions to improve agreement with data.
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2.3.3.2 Intermittency transport equation

The data correlation function, Equation (2.3.5), of Dhawan and Narasimha (1958) proposed
a prescribed intermittency distribution across the transition. But it was not clear in general
how to predict the transition location, or how to adapt the function to general flows.

A relatively new approach to intermittency modeling is to propose a transport equation
for the intermittency factor where the source terms are devised to mimic the behavior of some
algebraic intermittency models, such as Equation (2.3.5). This equation can be derived into a

transport equation. Note that for x > x;.

d’y T =Tt (p—zy)2/12 1—7 1/2
GV 9P = Tt/ — 9= " V[ 1pg(1 — .
dm th e ¢ lt [ Og( ’Y)]

If x is regarded as the stream-wise direction, this can be generalized to

w9y = 2= g -2,

If v is small /—log(1 —v) = /7. Adding a diffusion term provides a transport equation

Dy =2(1 — v)ﬁ% + V- [(v+vr)Vyl, (2.3.12)

where vy is the eddy viscosity. This is a starting point for more elaborate formulations. The
main advantages of this approach is that it is possible to model the transition process not
only in the flow direction but also across the boundary layer and thus provide a more realistic
prediction of the transition. The transport equation controls the rise of v from zero in laminar
flow to unity in turbulent flow. The onset position of transition still has to be determined by a
data correlation like Equation (2.3.2). The correlation involves the boundary layer momentum
thickness and the free-stream turbulence. The former is an integral property and the latter a
remote variable. This is unsuitable for unstructured-grid CFD codes. Otherwise in boundary
layer codes or structured-grid CFD codes, this approach is feasible since the grid lines are
aligned normal to the wall and the required variables can be obtained by searching in the grid
j coordinate (i.e. in the wall normal direction by assuming the grid is strictly aligned with the
wall).

Steelant and Dick (1996) proposed a transport equation for intermittency, in which the

as developed such that the v distribution of Dhawan and Narasimha
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(1958) can be reproduced. But it was restricted to the boundary layer computations. A data
correlation for transition onset was used. Suzen and Huang (2000) proposed an extended ver-
sion of the model of Steelant and Dick (1996) and produced a realistic variation of ~ in the
cross-stream direction, still requiring a data correlation. Suzen et al. (2003) involved a corre-
lation for Reg; in separated flows, again not in terms of local parameters. This is unsuitable
for general use in CFD.

To implement such equation in unstructured-grid CFD codes for more general engineer-
ing circumstances, some models which are formulated in only local variables are developed
(Menter et al., 2006a,b; Langtry and Menter, 2009). In their method, the data correlation is
replaced by a transport Equation (2.3.13) for transition Reynolds number. The intermittency

function solves a second transport equation (2.3.14).

DiReg, = Py + V - [2.0(v + v7)V Reg], (2.3.13)
2 __
where the source term Py; = 0.035')00—0(R69t — Regy)(1.0 — Fy;), and Fy; is a blending function,
v

which is equal to zero in the free-stream and one in the boundary layer.
Dyy=P,—E,+ V- [(v+v7r)Vyl. (2.3.14)
The source term P, and sink term FE., are defined as follows,

P’y = 20|S|(1 - 7) (’YFonset)O.E)F‘lengthy (2315)

E., = 0.06|y(507 — 1) Fyuro, (2.3.16)

Here |S| = 1/285;jSij, and [Q| = 1/2;Q4;. Flepgen is an empirical correlation that controls the

length of transition, and Fj,,se; controls the transition onset location. The form of F, ¢t is as

follows,

5 B Re,
onsetl = 5993 Rege

_ s 4
Fonset2 = mln(maX(Fonsetla Fonsetl

R 3
Fonset3 = Inax (1 - <%) a0>

Fonset = maX(Fonset2 - Fonset37 0),

),2.0)
(2.3.17)
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where
R, = vr
;|S| (2.3.18)
R, =
v

Note that the criterion of onset is now controlled by a local parameter R, instead of a integral
parameter Ry in Equation (2.3.2). So far, Reg. and Flengtn still need to be determined so as to
let production term (2.3.15) be well defined. In Langtry and Menter (2009), these two variables
are both functions of Reg, which is the solution of Equation (2.3.13). Data correlations are
used to construct the functions for Reg. and Fiepg, in v equation, and Reg; in éé;t equation.

The idea is similar to earlier models that specify transition location, then solve a vy-equation
to represent the transitional zone. But in Langtry and Menter (2009) the data correlation in-
volved in the source term Py; in Equation (2.3.13) invokes the mean velocity and the streamline
direction. That data correlation is not Gallilean invariant, which is problematic for multiple
moving walls in the domain.

Another key point is the sink term £, in Equation (2.3.14). Its effect is to drive v towards
zero in laminar boundary layer so that a trivial solution v = 1 can be avoided. This idea is
also used in the present model. More discussion will be given below.

For the purpose of explanation, the model introduced above is not exactly the same as the
one in Langtry and Menter (2009). More parameters and complicated correlations are used to

match the experimental data.

2.3.4 Transition Modeling for Rough Wall Cases

A few recent studies proposed roughness induced transition models. Some of them are based
on a data-correlation as the criteria of transition onset. In general, the correlation is regarding
the critical momentum thickness Reynolds number at the transition location, Regi—rougn. Its
form is Reg;—rougnh as a function of critical Reynolds number for smooth walls Reg;—smooth,
the roughness parameter, and turbulence intensity. The correlation in Stripf et al. (2009a)
depends on the effects of both the roughness height and density, while Boyle and Stripf (2009)
propose a simpler formula, which only depends on the roughness height. The former needs more

ghness geometry than the latter, and in addition, the dimensionless
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roughness height used by the former is the ratio of the true roughness height to the displacement
boundary layer thickness, r/d, rather than the more general form, r* = ru,/v. r is the
roughness height, and u., defined as u? = (v+4v7)9,U|,, for rough walls, is the friction velocity.
Lorenz et al. (2013) extended Stripf’s onset correlation based on more transition onset data,
including more roughness geometry parameters.

To complete this type of models, an intermittency expression depending on the stream-
wise coordinate downstream of transition onset, and a roughness turbulence model for the
fully turbulent region, are needed. More details about the roughness model for fully turbulent
boundary layers will be discussed below in Section 3.4.1.

For actually rough surfaces, roughness is parameterized by equivalent sand grain roughness,
r. The rough surface is replaced by an effective, smooth surface, on which new boundary con-
ditions are imposed. Although the geometry of real roughness is required by some correlations
that evaluate the equivalent sand grain roughness, a correlation proposed by Koch and Smith
(1976) provides a simple way to obtain the equivalent sand grain roughness solely from statisti-
cal parameters of the surface. That method was modified by Boyle and Stripf (2009) to obtain

better agreement with the measured data. The revised correlation for r is
T = 4.3ers(1 + CskSk), (2.3.19)

where Cyp, is set to 1.0, and the root mean square roughness height R,,,s and skewness Sy are

both statistical parameters, which read

> (yi — )

ers: n_1

bl

and

Sk: — Z?:l (yl - g)3 )
nR;ms
Here n is the number of grain elements in roughness calculation.
As the correlation proposed by Boyle and Stripf (2009) is a simple one, it will be used in the

next chapter, to calibrate parameters. In this approach, transition starts when the momentum

thickness Reynolds number Rey reaches a critical value, Reg;.

Regt— smooth
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Twu is the free-stream turbulence intensity at the transition onset location, and r* is the di-
mensionless roughness height. Reg;_ smootn is evaluated by Equation (2.3.1). The term 7+ — 5
implies that a surface roughness can be considered hydraulically smooth if T is less than 5.
One can also notice that by this correlation, the transition onset becomes independent of the
local turbulence intensity at high ™ values.

Another type of approach is based on transport equations, using local variables. Dassler et al.
(2010) proposed an extension of an existing transition model for smooth walls, which is known
as the y— Reg; model (Menter et al., 2006a,b; Langtry and Menter, 2009). An additional trans-
port equation is added on for a “Roughness Amplification”, A,, that serves as a transition onset
criterion. The production term of the transport equation for }/%E;t in the v — Reg; model is
modified by a function of A, to introduce effects of surface roughness.

A more recent paper Elsner and Warzecha (2014) combined the roughness transition model
by Stripf et al. (2009a) and the v — Reg; model. The transported variable R_égt in the smooth
wall model is modified based on the transition onset criterion given by Stripf et al. (2009a).
However, the integral quantity J, has to be calculated at each time step, so this model is not

based on strictly local variables.
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CHAPTER 3. DEVELOPMENT OF THE MODEL

3.1 Introduction

This chapter will explain the rational of the basis of the proposed model first. Then the
development of the model formulation will be introduced term by term and the roles of tunable

parameters will be illustrated.

3.2 Rational of the Current Model

A data correlation given by Praisner and Clark (2007) shows that

VA
Q?ransition =0.07 u/oo . (3'2'1)
00

Otransition 18 the momentum thickness at transition. A is referred to as the free-stream integral
length scale, and u/ the magnitude of the streamwise velocity fluctuation. The data cover a
wide range of pressure gradients, Reynolds numbers, free-stream turbulence intensities and
length scales as well as including low supersonic Mach numbers. All those data were collapsed
by (3.2.1) independently of all other parameters. Praisner and Clark (2007) cite the estimate

C,w = u/ /X for the variable of the kK —w model. Then (3.2.1) becomes

o2 Tv

transition — 9 .
Woo

(3.2.2)

Interestingly, only the time scale of the free-stream turbulence is involved in this correlation.
That seems to be too simple, since other data correlations invoke the free-stream turbulence
intensity in addition to the dependency on the rate of turbulence decay. But what is most
interesting, is that when turbulence scale is included, pressure gradients and other parame-

ters are secondary. Turbulence scale involves the free-stream eddy viscosity koo/weo and the
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In the present model, the value of + varies from unity within free-stream turbulent flow
to zero in the laminar boundary layer. The function « is used to suppress production of the
turbulent kinetic energy. Bypass transition is initiated through the diffusion of free-stream
disturbances into the boundary layer. As « rises from zero toward unity within the boundary
layer, production of v switches on and the eddy viscosity rises. Meanwhile, in order to have the
laminar boundary layer before transition, a sink term is invoked to work within the boundary
layer and drive v towards zero. This model was originally proposed in Durbin (2012). That
formulation was deficient in the sink term, and was only tested by boundary layer computations.

It contained no method to represent transition in separated flow.

3.3 Modeling for Smooth Wall Cases

The current model is derived from a basic model published in Durbin (2012). The inter-

mittency transport equation in that model is of the form

Bt = [ (% + 2)o] + Bl (e =) v (33.1)

with the boundary conditions v = 1 in the free-stream and 9,y = 0 on walls. || is the mean
vorticity. An assessment of this initial approach showed good agreement with the experimental
data in flat plate cases, both with and without pressure gradient. The model did not depend
explicitly on the pressure gradient, which is consistent with the fact that turbulence closures
generally do not depend directly on the pressure gradient.

The formulation (3.3.1) applied only to bypass transition in attached flow and was imple-
mented in a boundary layer code. In order to extend its application to general CFD codes and
hence to predict more practical engineering flows, some changes have been made.

Consider an intermittency transport equation as follows,

%Z = 9; [(a% + Z—i)af}/] +P, B, (3.3.2)

The source term is in the same form as (3.3.1),

P’Y = F’}’lQ’ (’Ymax - ’V) \ﬁ (3.3.3)
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The sink term is defined as,

Ey = Gy Fru| Q. (3.3.4)

All the factors and constants will be explained in the following sections.

3.3.1 Diffusion Term

The influence of the two constants o; and o, on the transition in the diffusion term is given
below. They are set to be 5.0 and 0.2, respectively.

From the diffusion term itself, we can predict that increasing o, decreases turbulent dif-
fusivity and delays transition, and vice versa. In the current model, o, is selected to be 0.2.
If it is doubled or more, the diffusion is suppressed and the transition delayed. The model is
less sensitive to this parameter once it becomes less than 0.2. When o, is halved, the result
changes very slightly; but it does give obvious early transition when o is 0.02 or even smaller.
This is due to the sink term which is designed to drive = to zero in order to have a laminar
region before transition. After transition, the sink vanishes and hence just doubling the value
of 0., delays the transition significantly. See Figure 3.3.1. Skin friction coefficient (Cy) curves
are plotted along the stream-wise direction of a flat plate test case, T3A, one of the T3 series of
flat-plate experiments conducted by the European Research Community on Flow Turbulence
and Combustion (ERCOFTAC). See Langtry and Menter (2009) and Durbin (2012).

However, the effect of oy is a little bit subtle. When it is doubled, the C'y curve transitions
early; whereas, transition occurs further downstream if o; is halved — a reverse effect of o,
(see Figure 3.3.2). Durbin (2012) attributes this to alteration of the mean shear in the upper
part of the boundary layer. Decreasing o; appears to decrease the mean shear and hence
generate lower k and delay the transition. To illustrate the respective effects of the laminar
and turbulent diffusivity, the diffusion term with another three cases — only v = 0, only vy =0
and v = vp = 0 are set and compared with the normal case. See Figure 3.3.3, and the black
lines represent the profiles of the dg9 boundary layers. The deficiency of laminar diffusion, i.e.
v = 0, enhances diffusion with high values of + in the boundary layers. The lack of turbulent

diffusion presents an opposite effect.
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Figure 3.3.1 Sensitivity of o, to the transition location. o, = 0.2 (solid), 0., = 0.02 (dash),

o, = 0.1 (dash-dot), o, = 0.4 (dash-dotdot), o, = 0.8 (long-dash).
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Figure 3.3.2 Sensitivity of o; to the transition location. o; = 5.0 (solid), o; = 10.0 (dash),

o; = 2.5 (dash-dot).
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(a) v and vr are both normal values. (b) v =0 but vr is normal.
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(¢) v is normal but vy = 0. (d) v and vr are both zero.

Figure 3.3.3 Contours of v for the T3A case, with different values of v and v in the diffusion

term. The black lines represent the profiles of the dg9 boundary layers.

3.3.2 Source Term

Note that v,4. = 1.1 instead of unity is placed in the source term (Equation 3.3.3). This is
in order to enhance the effect of the source term to drive v to one. Accordingly, v could exceed

unity due to such source, which is not allowed. After each step of the computation, - is forced

www.manharaa.com




29

to the value of min(y,1) to prevent values greater than unity. This has a small effect, but
it does force a full transition to turbulence guaranteeing v to be unity after transition. This
clipper will be embedded into the standard & — w RANS model with which Equation (3.3.2) is
coupled.

Mean shear is represented by the magnitude of the mean rotation rate Q| (i.e. /2 Q).
It recalls that turbulence is caused by mean shear. || is an invariant measure of shear, and it
vanishes in the irrotational free-stream.

The factor F, is a function of two parameters, R, and T,,. F, switches on as transition
proceeds. Once it comes into play, v will increase up to unity within the region that F, affects.
Therefore, turbulent kinetic energy k increases as well as the eddy viscosity. Figure 3.3.4 depicts
the contours of the source term, whose trigger-on point is at the upstream of the transition

onset location. By comparing Figure 3.3.3(a), the effect of the source term is clear to be seen.

0051 152253354455

0.05

0.04

0.03

0.02

0.01

Figure 3.3.4 Contours of the source term for the T3A case. The black line represents the
profile of the §99 boundary layer.

Three non-dimensional parameters are involved, where d is distance to the wall. R; is the

ratio of eddy viscosity to molecular viscosity, namely the turbulent Reynolds number. The
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parameter T, is R; multiplied by |Q|/w to make it vanish in the free-stream. Another view of

T,, is that in parallel flow T}, = |uv|/vw. In the log-layer it equals to u?/vw = 1/w,.

Rt = V—T,
1%
0
Tw = Rtu, (335)
w
_ a9
{ Ry = 2.188v

R, is the vorticity Reynolds number, which depends only on local variables. Note that
near a wall it goes like wall distance squared, i.e. R, — yi /2.188, as y+ — 0. It is defined
as such that in the Blasius boundary layer its maximum in the normal wall direction is equal
to the momentum thickness Reynolds number: max, R, = Rg. When the boundary layer is
subjected to pressure gradients, the relationship between momentum thickness and vorticity
Reynolds number will change due to the change of the profile of R,. In Falkner-Skan boundary
layers max, 17, is less than Ry for favorable pressure gradients and greater than Ry for adverse
pressure gradients. So a fixed value of R, will correspond to a higher Ry for favorable pressure
gradients and a lower Ry as the pressure gradient becomes adverse. In addition, this relative
relation between R, and Ry can also be used to predict separation-induced transition when
strong adverse pressure gradient exists.

Langtry and Menter (2009) also stated a physical reason of using R,, by arguing that the
combination 32|Q2| is responsible for the growth of disturbances inside a boundary layer, while
v is responsible for their damping. To be concise, R, implicitly contains information on Ry
which in data correlations is used to indicate the onset of transition.

Now come back to the definition of F,. T, is used to form a critical Reynolds number, R..
It is a decreasing function of T;,. If the turbulence intensity is low, T}, will be low and R, will

be high. R, is a linear ramp down between 400 and 40.
(T
R, =400 — 360 min 5 1). (3.3.6)

As the local Reynolds number R, crosses R. from below, F, ramps up from zero. Again

Meanwhile, a ramp down is included if the Reynolds number crosses
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Rybound = 100/0.7 without the flow becoming turbulent. This approach is to suppress F, for

low free-stream turbulence. The concrete formula for F, is

F, = 2max [0, min (100 — 0.7R,, 1)]

(3.3.7)
X min [max (R, — R.,0),4].
In other words,
0, if Ry <R, orif R, > 100/0.7,
Ffy =
8, if Ry >R.+4 cde,,SlOO/O.'?—l.
0.01p
101
ol 0.008 [
8r ' ]
m : : 0.006
i : 5
Wy ; : 0.004
afb 1 '
| ! : ,
1 ] 0.002
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(a) Fy vs. R, with R. = 100. (b) Cy with different Rupound-

Figure 3.3.5  Rypound is equal to 100/0.5 (dash); 100/0.7 (solid); 100/0.9 (dash-dot).

Note that this is a recalibration of the formulas in Durbin (2012) because of the addition of
E., to Equation (3.3.2). The specific upper limit of 4 in the second factor of the right-hand side
of Equation (3.3.7) has a small effect; a greater value does not change the result very much.
A plot of F, versus R, is given in Figure 3.3.5, when the critical Reynolds number R, is 100,
which illustrates how F, ramps up then down. The upper limit of R, where F, crosses from
non-zero to zero (Rypound) is sensitive to the location of transition. If it is set to be greater than
100/0.7, transition is accelerated; if it is less, transition is delayed. However, due to the effect

in the next section, if for example Ry poung = 100/0.5 is used, the Cf
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curve will be barely changed rather than showing an early transition. When R, poung = 100/0.9,

it does result in a late transition.

3.3.3 Sink Term

Without a sink term, the vy-equation (3.3.2) would have the solution v = 1. The numerical
elliptic solver will converge to unity within the whole domain, which will produce fully turbulent

results. See Figure 3.3.6.
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Figure 3.3.6 Skin friction coefficient vs. Re, in a flat plate test case (T3A); the solid curve
represents the result based on the model without sink term. The other three
represent the experimental data (square), theoretical laminar (dash) solution,
and semi-empirical turbulent solution (dash-dot) respectively.

In order to force ~ close to zero within the laminar region, a sink term is added in Equation
(3.3.2). Another feature of the sink term is that it has to vanish after transition because -y
is supposed to be unity in the fully turbulent region. This feature is implemented by the
multiplication of two functions, G, and Fj,p. See Figure 3.3.7 — contours of the sink term,
along with Figure 3.3.3(a) and 3.3.4. 7 is low within the laminar region under the work of the

sink term and rises to unity downstream after the source term switches on whereas the sink
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switches off. Note that the sink term in Langtry (2006) does not shut off in the fully turbulent

region. v remains very small near the wall after transition.
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0.015
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Figure 3.3.7 Contours of the sink term for the T3A case. The black line represents the profile
of the §99 boundary layer.

The definition of G is similar to F, in the source term, as defined in Equation (3.3.8). It
is used to ensure the laminar region before transition. It ramps up from R, = 18 and ramps
down after R, = 100. See Figure 3.3.8. A factor 7.5 in (3.3.8) is chosen for the strength of the

sink term.

G = 7.5max [0, min (100 — R, 1)]
(3.3.8)

X min [max (R, — 18,0),1].

In other words,

0, if R, <18, orif R, > 100,
Gy =
7.5, if R, >19 and R, <99.

The lower bound R,jpoung = 18 is critical, to some extent. In the test case T3B (Langtry and Menter,

2009 with-high-free-stream turbulence intensity, the model will be invalid if R, ipoung too large.
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For such a case, the laminar region is thin and short. Therefore, a relatively high R, ipoung may
not catch the thin laminar region near the wall and hence the sink term may vanish. See Figure
3.3.8. Too small a value for R, pouna i not proper either because the sink term is supposed to
vanish after transition. Recall that R, goes like yi near the wall so that too small Rypound,

say 0, makes GG non-zero into the turbulent region, with the sink term not vanishing.
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(a) Gy vs. R,. (b) Cy with different Ruibound-

Figure 3.3.8  Ryipound is equal to 18 (solid); 22 (dash); 26 (dash-dot). From 18 to 22, the
difference is tiny; but from 22 to 26, Cy curve suddenly becomes fully turbulent.

Frurp 18 a function of R, and R;. It will vanish outside the laminar boundary layer. It is

defined as,

Fiupp = e~ (BvRD)™? (3.3.9)
The power 1.2 is selected to match data. A large value of it will reduce the region affected by

Fiurp, which in turn sup